Version 12 (modified by mggr, 17 years ago) (diff) |
---|
To check on the right coordinates of OS active stations, see the link below http://gps.ordnancesurvey.co.uk/active.asp
Base station data not 1 second resolution? Resample (interpolate using posgps). While this doesn't improve the data, it apparently makes it more evenly applied (no internal interpolation?). Unverified.
Short notes on processing
- Understand what you're doing!
- Create new project, aim at <data dir>/applanix. Name should be "YYYYJJJ.ppc". Both filename kernels should be "YYYYJJJ".
- Hit "Extract"
- Kernel should be "YYYYJJJ".
- Read through output for errors - key things to look for are data gaps (if large, you may have to split the processing)
- Hit "POSGPS"
- Convert input files to GPB (File -> Convert -> Raw GPS to GPB)
- Plane applanix
- Set receiver type to autodetect
- Point at the applanix/Extract directory (check this!) and 'Auto add all' (this should add a NovAtel OEM3 file)
- Select the Novatel file, click options and Make all epochs Kinematic (this is because the Novatel is the sensor on the plane, which is definitely kinematic!)
- Run the conversion (check output for errors)
- Base stations (repeat for all base stations)
- Set receiver type to autodetect
- Point at the base station directory, probably Rinex, and 'Auto add all' (this should add a file, probably Rinex for the UK)
- Run the conversion (check output for errors, some health warnings are ok)
- File -> Add Remote File, select the gpb file in the applanix/Extract directory, defaults fine
- (for all base stations - note: multiple base stations may need other stuff done)
- File -> Add Master File(s), select the gpb file in the basestation directory
- (if you have gaps, it may offer to resample for you - not sure if we need to do this or not)
- The basestation data will come with extra info specifying the precise location and antenna type.
- Fill in the antenna type (use advanced method) if you have the info, otherwise set the height appropriately
- The base station location will come in a particular datum/coordinate system - you must correctly convert this to a form that POSGPS knows about.
- For UK base stations, see the instructions below for this conversion.
- Loading the airborne settings in POSGPS (Settings -> Load Settings From -> Airborne)
- Process differential (button looking like a blue world with a ruler on it). This brings up a set of options.
- Change the Process -> Process Information -> Desc each run so you can compare between results.
- Try a run with the default settings first, then investigate other options as needed (see notes below for tips and issues)
- Read the output for hints as to problems. You want to see "Fixed" ambiguity and a green (1).
- Iterate as often as needed
- When processing is complete, the track will be coloured according to the quality of the data. The important parts should be green!
- Click the graph button (or Output -> Plot GPS Data) and review the error estimates.
- To get time periods for the important parts of the track, left click on points on the track and note the time.
- To restrict the display on a graph, right click on points to set start/end time or to restrict the Y range.
- Important statistics (remember these are just estimates and not based on ground truth!):
- Number of satellites (BAR)- needs to be 5+ for a chance of adequate data quality
- Combined separation - displays the difference between the forward and reverse solutions for each axis - want the error to be small (<10cm for X & Y, < 30cm for Z) and the separation tiny.
- (mggr needs to transcribe the rest from notes)
- When happy you have the best you can, click Output -> Export to PosProc. Then save and exit POSGPS (goes back to POSPac)
- Run POSProc.
- Change the Proc. filename kernel to YYYYJJJ.
- Make sure "Post-Process GPS" is ticked - if it's not there, you didn't save the POSGPS output correctly!
UK Rinex base stations
For the UK Rinex stations, the position is provided as Earth-centered Cartesian coordinates (XYZ) in the ETRS89 datum (directly compatible with WGS-84, just more exacting). As they're compatible, these coordinates just need to be converted to WGS-84 lat/longs for POSGPS. If we were coming from or going to a different datum/coordinate system (e.g. OS National Grid), we would need to do a coordinate transformation rather than conversion - this is complicated!
For the O/S UK GPS network (Rinex format files), the .07o file has a header like this:
2.1 OBSERVATION DATA G (GPS) RINEX VERSION / TYPE GPServer 2.50 2620 Rinex Merge 11-May-07 08:03:46 PGM / RUN BY / DATE NEOT MARKER NAME MARKER NUMBER National GPS Network Ordnance Survey OBSERVER / AGENCY 0036227 LEICA SR530 4.20 REC # / TYPE / VERS 0 RCV CLOCK OFFS APPL 102098 LEIAT504 LEIS ANT # / TYPE 3918702.4172 -7624.0107 5015612.3424 APPROX POSITION XYZ 0.0000 0.0000 0.0000 ANTENNA: DELTA H/E/N 1 1 0 WAVELENGTH FACT L1/2 5 C1 P2 L1 L2 D1 # / TYPES OF OBSERV 1.000 INTERVAL 2007 5 10 9 0 0.0000000 GPS TIME OF FIRST OBS The APPROX POSITION XYZ coordinates are NOT APPROXIMATE COMMENT APPROX POSITION XYZ replaced by precise ETRS89 values COMMENT END OF HEADER
Note the ANT # / TYPE line and the ANTENNA: DELTA H/E/N for antenna details.
The APPROX POSITION XYZ is the precise ETRS89 X,Y,Z location (see COMMENT sections to confirm this it says it's precise). This must be converted to a WGS-84 lat/long:
- Go to http://www.ordnancesurvey.co.uk/oswebsite/gps/information/coordinatesystemsinfo/gpsspreadsheet.html and get the coordinate conversion spreadsheet (or see attachment)
- Enter the coordinates from the APPROX POSITION field in the .07o file into the XYZ fields on the Enter Coords here sheet, clearing the other fields
- Check the constants are set for WGS-84
- Take the lat/long/ellipsoidal height from the XYZ to lat,long,H sheet and enter into POSGPS (you may want to save these as a favourite too)
Processing tips
If the data quality isn't good enough, then you can change some of the settings to effect improvements / admit more data.
- cut out sections of the track if they have significant gaps
- right click on the track and set start/end time in the appropriate places, then reprocess
- lower the satellite horizon - you might do this to accept more satellite if there are an inadequate number covering an area (minimum 5 for decent quality)
- increase KAR range - up this if your base station is further than 30km away
- try different ionosphere models
Todo: add in detailed notes from Applanix training course
Attachments (1)
-
ProjectionandTransformationCalculations.xls
(224.5 KB) -
added by mggr 17 years ago.
OS coordinate conversion spreadsheet (taken 19/Sept/2007)
Download all attachments as: .zip