Changes between Initial Version and Version 1 of Sensors/Specim


Ignore:
Timestamp:
Sep 21, 2009 5:06:39 PM (10 years ago)
Author:
mggr
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • Sensors/Specim

    v1 v1  
     1= Specim instruments =
     2
     3You can find a thesis covering the underlying principles of the Specim instruments (Eagle & Hawk) at http://www.vtt.fi/inf/pdf/publications/2001/P435.pdf
     4
     5== Notes of interest ==
     6
     7Eagle uses a 1024x1024 CCD, but only the middle ~504 spectral pixels are used in normal operation (representing the range from ~390nm to ~950nm) and is normally spectrally binned by 2 (giving 252 bands).
     8
     9However, when used with a band file for "calibration mode", the instrument returns the full data width (i.e. all 1024 pixels).  This must be accounted for in any calibration code. (source: phone chat with Bill, 6/Nov/2007, much amended 30/Jul/2007 following corrections to Mike's interpretation from Bill)
     10
     11== File format ==
     12
     13Eagle and Hawk capture data as ENVI format BIL files (a pair of .hdr and .raw), with an associated nav file (sometimes just one per project, sometimes one per line).  The header files are easy to find - they're ASCII and begin with "ENVI".  The .raw and .nav files are harder to get as neither have a header.
     14
     15The raw Eagle and Hawk data can be recognised by scanning for an incrementing frame number (unsigned short int) at pixel 0, band 0 of each frame.
     16
     17The nav files don't appear to have a header of any kind.  Apparently they are applanix POSATT format binary files and have no useful header; the data frames have a 2 byte ID, but this would not identify the file.  They hold real time navigation information plus a marker indicating the exact start point of a line / capture.
     18
     19== Data transfer ==
     20
     21The data from the CCD is transferred to a framegrabber card in the computer using [http://en.wikipedia.org/wiki/Camera_Link Camera Link].  As this is a digital protocol, there are no digitisation effects to worry about.
     22
     23The frame grabber lag time is apparently 55ms regardless of frame rate.
     24
     25== Eagle ==
     26
     27|| Detector size                                 || 1024x1024 ||
     28|| Raw sensor bit depth                          || 12 bit ||
     29|| Spatial pixels                                || 1024 (unbinned)[[br]]leftmost 72 dedicated to FODIS, leaving 952 for imagery ||
     30|| Spectral pixels                               || 1024 on CCD, central ~504 in use, normally binned by 2 in operation ||
     31|| Spectral resolution                           || 3.3 nm ||
     32|| Nominal spectral range (prior to calibration) || 400-970nm ||
     33|| Central pixel number                          || 512 (of original 1024, unconfirmed)[[br]]Once FODIS region is stripped, this is pixel no 440 (unconfirmed) ||
     34|| Focal length                                  || 18.3mm (manufacturer supplied)[[br]](18.5mm on manufacturer datasheet retrieved 20090817 - http://www.specim.fi/products/aisa-airborne-hyperspectral-systems/aisa-series.html ||
     35|| Field of View (FOV)                           || 37.7 degrees (from manufacturer datasheet retrieved 20090817 - http://www.specim.fi/products/aisa-airborne-hyperspectral-systems/aisa-series.html ||
     36|| Pixel size                                    || 12 micrometers (unbinned) ||
     37|| IFOV                                          || 0.037 degrees (from manufacturer datasheet retrieved 20090817 - http://www.specim.fi/products/aisa-airborne-hyperspectral-systems/aisa-series.html ||
     38
     39The smile and keystone are <2 microns, according to the datasheet.
     40
     41=== IFOV calculations ===
     42
     43Using the 2 * tan^-1^( PIXELSIZE / 2 * FOCAL_LENGTH) calculation from http://www.fas.org/man/dod-101/navy/docs/es310/EO_image/EO_Image.htm, you get:
     44 1. 0.03771002 degrees, using 18.3mm for the focal length
     45 1. 0.037165 degrees, using 18.5mm for the focal length
     46
     47Using the FOV / number of pixels method, you get:
     48 1. 0.036816406, from FOV / 1024 (raw sensor spatial pixels)
     49 1. 0.03960084, from FOV / (1024 - 72) (raw sensor spatial pixels minus FODIS region) - most likely to be wrong of all these.
     50
     51== Hawk ==
     52
     53|| Detector size                                 || 320x256 ||
     54|| Raw sensor bit depth                          || 14 bit ||
     55|| Spatial pixels                                || 320 (unbinned) ||
     56|| Spectral pixels                               || 256[[br]]typically ~220 in use ||
     57|| Spectral resolution                           || 12 nm ||
     58|| Nominal spectral range (prior to calibration) || 970-2500nm ||
     59|| Central pixel number                          || 160 (unconfirmed) ||
     60|| Focal length                                  || 22.8mm (manufacturer supplied)[[br]](22.5mm on manufacturer datasheet retrieved 20090817 - http://www.specim.fi/products/aisa-airborne-hyperspectral-systems/aisa-series.html ||||
     61|| Field of View (FOV)                           || 24.0 degrees (from manufacturer datasheet retrieved 20090817 - http://www.specim.fi/products/aisa-airborne-hyperspectral-systems/aisa-series.html ||
     62|| Pixel size                                    || 30 micrometers (unbinned) ||
     63|| IFOV                                          || 0.075 degrees (from manufacturer datasheet retrieved 20090817 - http://www.specim.fi/products/aisa-airborne-hyperspectral-systems/aisa-series.html ||
     64
     65The smile and keystone are <5 microns, according to the datasheet.
     66
     67Jukka @ Specim sent email (25/July/2008) detailing some properties of the Hawk sensor.  A summary is:
     68 * the detector is a mercury cadmium telluride (MCT) sensor
     69   * this is sealed in a vacuum, which may gradually leak and increasingly cause more bad pixels to appear
     70   * the leaking process takes 6 months to several years according to the manufacturer, and the sensor can be restored by a factory process (at Specim?)
     71   * if we see an increase in bad pixels, we may wish to have the instrument serviced, but recalibrations will save some of the pixels anyway
     72 * bad pixel specification: "if the pixel peak responsivity differs more
     73than +/- 30% from average responsivity, it is considered to be
     74bad. According to specification less than 2% of pixels should
     75be bad. In practice that is from 0.3 to 1.0 %."
     76